If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2+6=96
We move all terms to the left:
2w^2+6-(96)=0
We add all the numbers together, and all the variables
2w^2-90=0
a = 2; b = 0; c = -90;
Δ = b2-4ac
Δ = 02-4·2·(-90)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{5}}{2*2}=\frac{0-12\sqrt{5}}{4} =-\frac{12\sqrt{5}}{4} =-3\sqrt{5} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{5}}{2*2}=\frac{0+12\sqrt{5}}{4} =\frac{12\sqrt{5}}{4} =3\sqrt{5} $
| 8-5u=-18 | | 98-u=243 | | 15v-8v=14 | | 3x+2x+2=11 | | 25-w=171 | | 5x-76=6x-80 | | 1/7(105+x)=20 | | 4=8((1)/(2)z+1) | | 27-u=268 | | 7777777777777777777777777777777777777777777777777777777777777777777777777777777777777*8888888888988989898989=45678987654567898765x | | 5-2(x+6)=0 | | 2(-4+3x)=28 | | 7k=7k=4 | | 2.77777777777777777-9999999=789x | | -3(-6x+3)=-45 | | 118+3x=5 | | -2(3+5x)=44 | | 26-5x=6(-2-6x)-7x | | 7x+19=3x-54 | | −10x+7=5x−5 | | -3(2x+5)-10x=-47 | | 7(1x+2)=-28 | | x+2(x+4)=x-2 | | 75=x+78 | | 3(9-5x)=-33 | | 41.4=3.6(x4.5) | | −2x−6=2x+6 | | 3x+12=3(x+4) | | x/5=2,4 | | 8+4x+43=79 | | 9x³-15x+2=0 | | x+2(x+0=4x-2 |